

Improving Customer Choice, Reducing Bills, and Shifting Loads with Time-Varying Rates

Josh Bode, Brian Kurtz, & Tim Larsen
PLMA 2024 Spring Conference, Portland, OR
May 6-8, 2024

Time-varying rates on Long Island

KEY FACTS Ridgefield Trumbull

- LIPA installed smart meters for over 1 million customers
- Residential Customers: 1,026,143
- Commercial Customers: 133,597
- 2023 Peak Demand ~5,000 MW
- 19,884 GWh of annual consumption
 - ~5,500 MW of generating capacity

TIME VARYING RATE ROLL OUT

- Voluntary TOU rates starting 2021
 - 4 different rates
 - Targeted "structural winners", especially EV owners
 - Successful marketing talk to Brian Kurtz
 - Focus on providing customer choice and analysis of AMI data to understand bill impacts

Default TOD rates starting 2024

- Time-of-day for approximately 800,000 sites
- Rolling out in waves
- DSA/PSEG-LI Randomized Control Trial in 2024-2025
- Only includes structural winners and sites that can lower bills if they take moderate actions

Did enrolling in TOU rates change behavior?

Marketing targeted customers with favorable load patterns

- Did TOU customers simply keep same patterns?
- Or did they change behavior once enrolled?

Other research questions

- Bill impacts
- Impacts for EV owners?
- Impacts for Balanced Billing customers? (50% on Long Island)
- Changing impacts over time?

Key Takeaways

1

HOURLY IMPACTS are clear, follow the expected pattern:

- Reduced demand during Peak hrs.
- Increased demand overnight

2

EVENING HOURS (8-10 P.M.):

Large decreases between Peak and Super Off-Peak (lower cost to shift these loads)

5

BALANCED BILLING: Customers still responded to price incentives. Made up almost half of TOU enrollees.

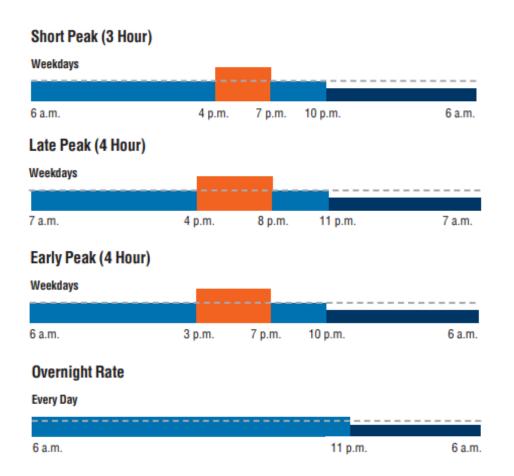
EV OWNERS: Decreased usage for

overnight. About 50% of all daytime

reductions from EV owners

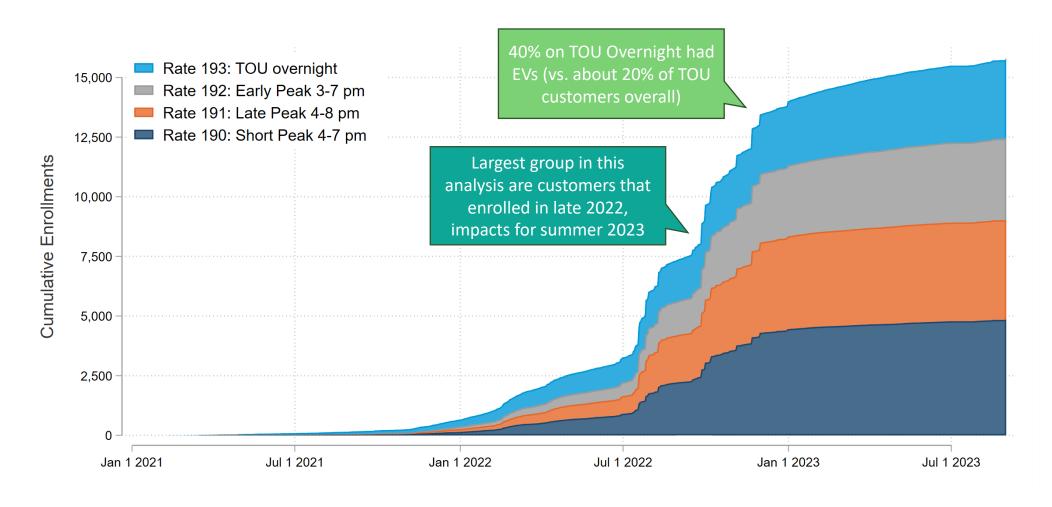
all daytime hours and large increases

3

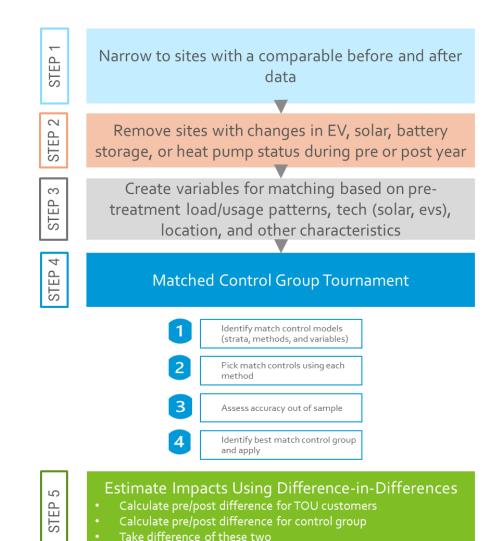

customer Bills: Decreased because of price structure, but decreased further due to behavior changes

6

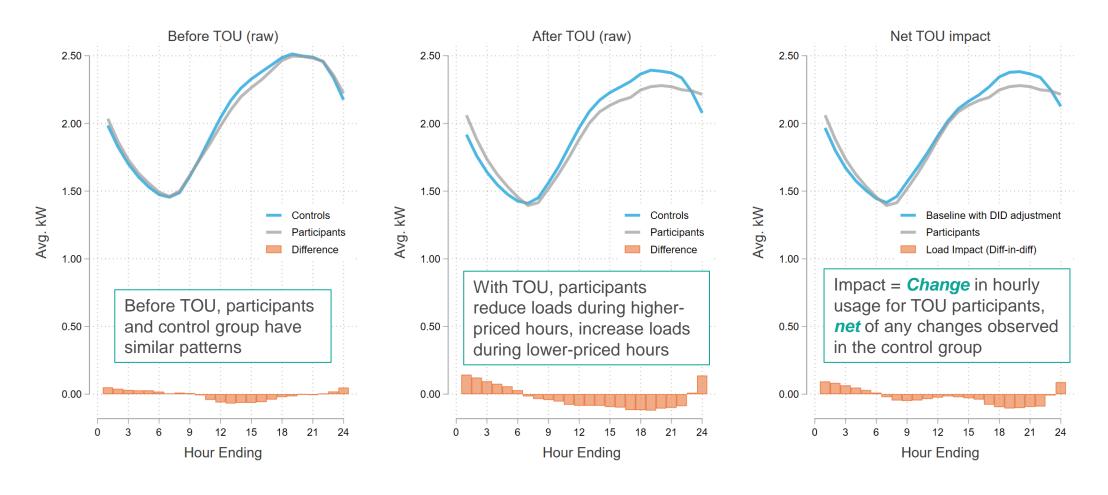
2nd SUMMER: Decreases in Peak usage, increases overnight usage persisted into second summer for customers enrolled by summer 2022


TOU rates by hour and price (Summer 2022)

Rate (per kWh)	Super Off-peak	Off Peak	Peak	
190: Short Peak (3-hour)	\$0.12	\$0.20	\$0.43	
191: Late Peak (4-hour)	\$0.12	\$0.20	\$0.36	
192: Early Peak (4-hour)	\$0.12	\$0.20	\$0.38	
193: Overnight Rate	\$0.12	Daytime: \$0.24		


Over 15,000 Residential Customers by Summer 2023

Analysis: Compare TOU enrollees to matched control group


- TOU rates were voluntary ⇒ Need to construct a control group
 - Compare usage trends over time (*Differences-in-differences*)
- PSEG-LI targeted structural winners
 - TOU customers already had more overnight/less peak usage before enrolling
 - Very different from avg. customer
- Customer base was large enough for strong matches
 - Including for EV owners, Balanced Billing, etc.

Raw data shows decrease during/after peak, increase overnight

Hourly impacts, summer weekdays in 2022, 2023 combined (June – September)

Average Hourly Impacts – Summer Weekdays

Daytime

Hour	Impact (kW)	Impact (%)	t-stat	
6 – 7 a.m.	-0.02	-2%	-2.93	
7 – 8 a.m.	-0.05	-3%	-5.97	
8 – 9 a.m.	-0.05	-3%	-5.79	
9 – 10 a.m.	-0.04	-3%	-4.97	
10 – 11 a.m.	-0.04	-2%	-3.84	
11 – 12 p.m.	-0.03	-1%	-2.76	
12 – 1 p.m.	-0.03	-1%	-2.46	
1 – 2 p.m.	-0.03	-1%	-2.78	

Afternoon & Evening

Hour	Impact (kW)	Impact (%)	t-stat
2 – 3 p.m.	-0.03	-2%	-3.47
3 – 4 p.m.	-0.04	-2%	-4.34
4 – 5 p.m.	-0.08	-3%	-7.92
5 – 6 p.m.	-0.10	-4%	-10.09
6 – 7 p.m.	-0.11	-5%	-11.47
7 – 8 p.m.	-0.12	-5%	-11.73
8 – 9 p.m.	-0.11	-4%	-10.87
9 – 10 p.m.	-0.12	-5%	-11.37

Night

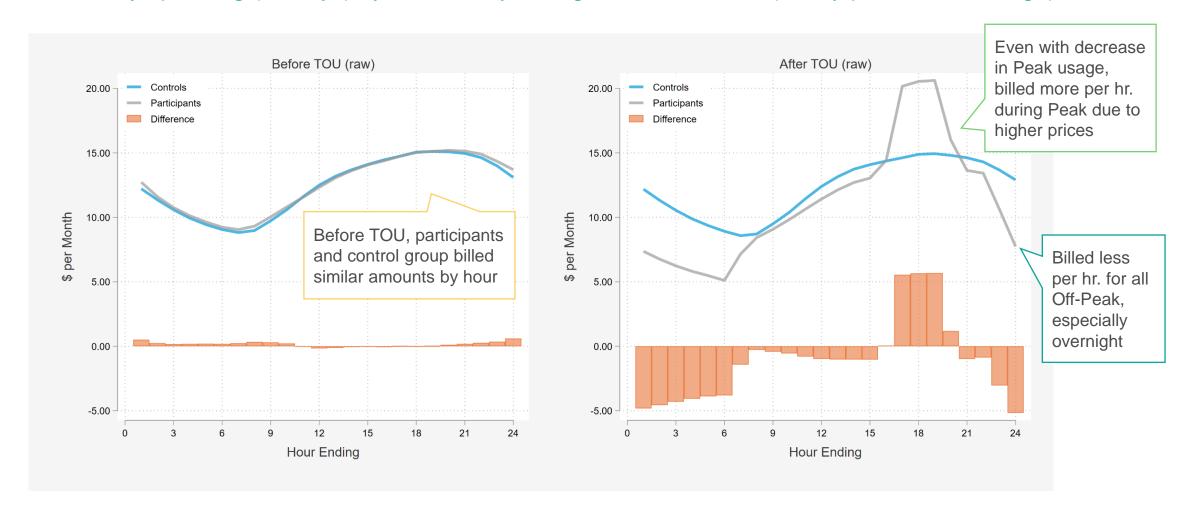
Hour	Impact (kW)	Impact (%)	t-stat
10 – 11 p.m.	-0.03	-1%	-3.02
11 – 12 a.m.	0.08	3%	5.99
12 – 1 a.m.	0.10	5%	8.03
1 – 2 a.m.	0.09	5%	8.08
2 – 3 a.m.	0.07	4%	6.51
3 – 4 a.m.	0.05	3%	4.86
4 – 5 a.m.	0.02	2%	2.57
5 – 6 a.m.	0.00	0%	0.33

^{*} Peak hours shown in blue, Super Off-Peak in green

- 4 during Peak hours
 - .10 kW for 15,000 participants ⇒ ≈ 1.5 Mw aggregate impact
- If for most other daytime hours as well (especially 7 -10 a.m.)

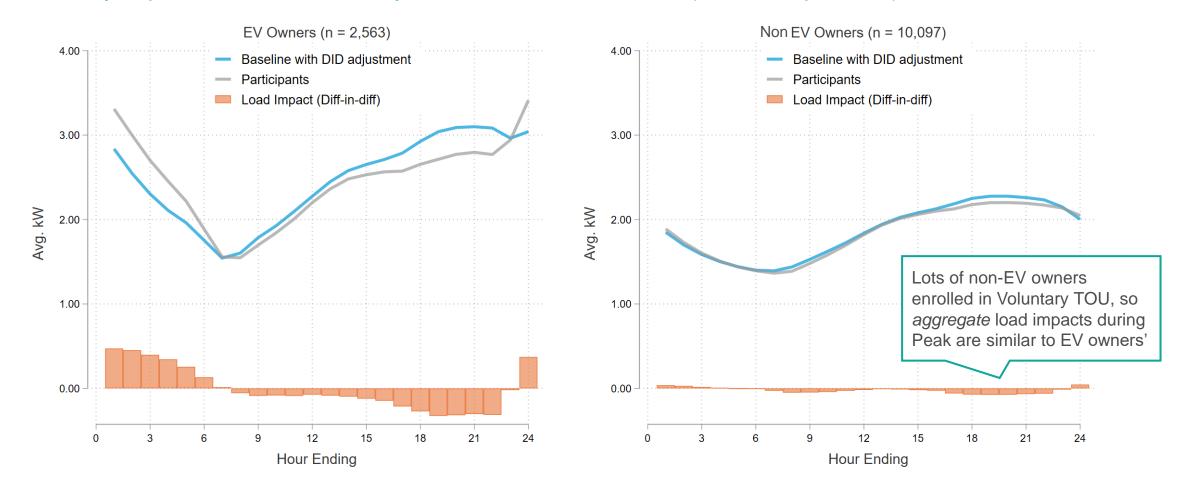
- - Especially in first few hours, likely scheduled EV charging
- \$\psi\$ before Super Off-Peak (8 10 p.m.)
- No evidence of precooling, snapback

TOU customers saved on summer bills


- Targeted structural winners who were likely to save on TOU rates
 - Part of savings simply due to change in price structure
- Matched controls had similar usage patterns before TOU, so also structural winners
 - Diff.-in-diff. also includes bill impacts from *change in usage pattern* after enrolling in TOU rate

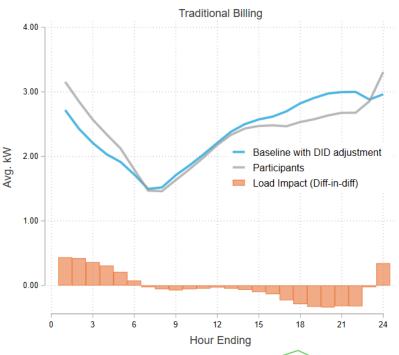
	TOU CUSTOMERS' BILLS			CONTROL GROUP BILLS			MONTHLY IMPACT	
Month	Before	After	Diff.	Before	After	Diff.	Bill Amt. (\$)	Pct.
June	\$324.88	\$267.26	-\$57.62	\$318.26	\$295.38	-\$22.88	-\$34.73	-11.5%
July	\$358.05	\$367.04	\$8.99	\$351.14	\$404.74	\$53.60	-\$44.60	-10.8%
August	\$377.16	\$348.31	-\$28.85	\$371.60	\$384.52	\$12.92	-\$41.77	-10.7%
September	\$265.85	\$222.12	-\$43.73	\$262.21	\$242.19	-\$20.02	-\$23.70	-9.6%

TOU customers billed more during peak but less overall


Monthly spending (30 days) by hour of day during summer months (hourly price x kWh usage)

Much larger impacts for EV owners

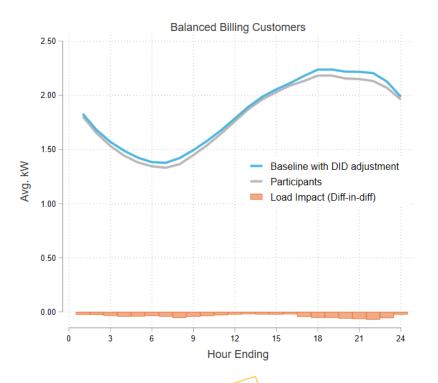
Hourly impacts, summer weekdays in 2022, 2023 combined (June – September)

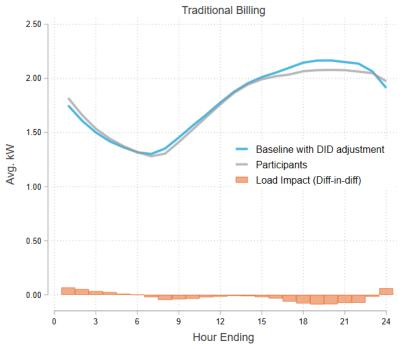


Balanced Billing customers responded to incentives, too

EV OWNERS: Hourly impacts for, summer weekdays in 2022-2023

Overall, hourly results *very similar regardless of bill timing*:


- Savings during Peak
- Increased overnight loads

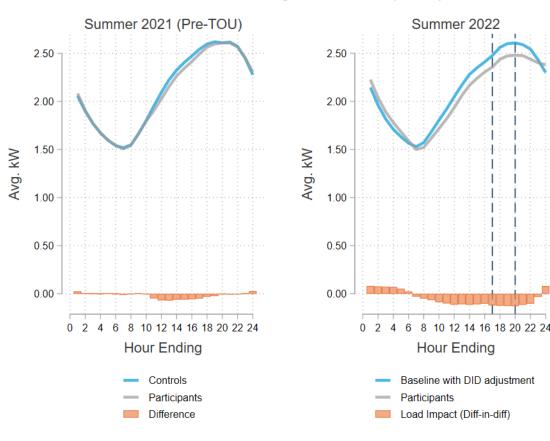

- TOU rates impacted usage even when the price signal was significantly delayed
- High rates of Balanced Billing for PSEG-LI (about 50%)
- Could pose challenge for default TOD rollout, but these customers responding to prices

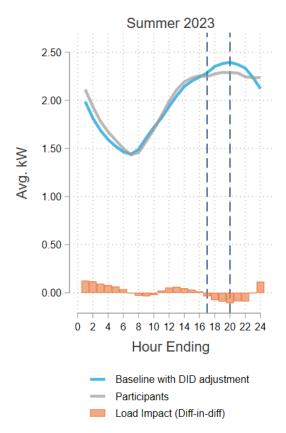
Balanced Billing customers responded to incentives, too

■ NON-EV OWNERS: Hourly impacts for, summer weekdays in 2022-2023

- Some utilities worry about the tradeoff between bill smoothing and time-varying rates
- For these customersPSEG-LI was able to doboth

Balanced Billing customers tended to save during all hours

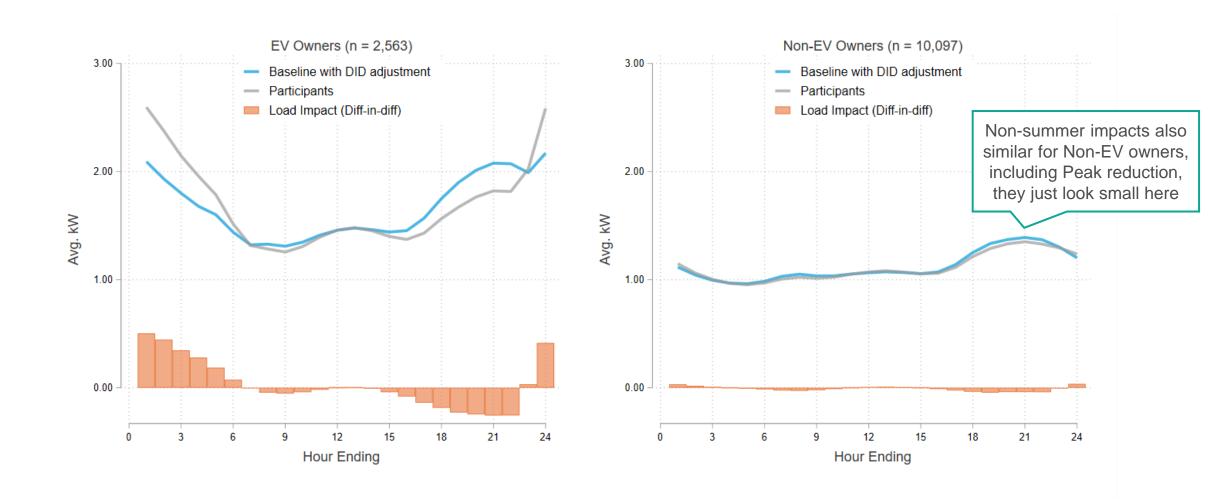

Overall, hourly results are very similar, especially Peak savings



Impacts in 1st Summer vs. 2nd Summer

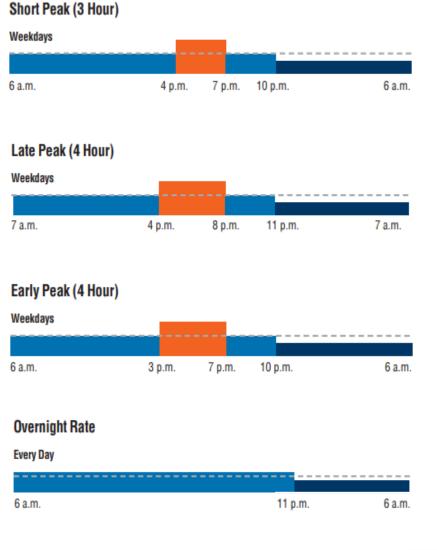
Customers enrolled by summer 2022 only

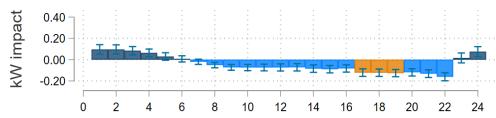
TOU vs. Control Usage, Pre-TOU (2021) & Two Summers Post (2022, 2023)

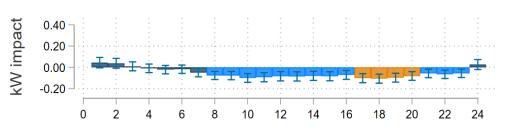


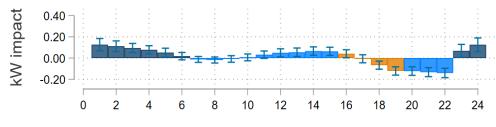
- Only looking at customers w/ TOU in both 2022 & 2023 ⇒ comparing exact same customers on same day of year
- Still saw peak savings in 2023
- Overnight usage û further in 2023
- Daytime (non-peak) savings

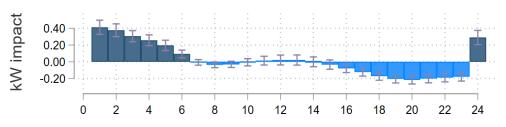
 in 2023
- Learning over time?




Non-Summer: EV owners had similar hourly savings






Impacts by Rate Code

- Largest hourly increase: 11 p.m. for overnight rate
- Increases at 10/11 p.m. on other rates, too
- Otherwise no sharp changes in usage
- No evidence of precooling or snapback (could change in future)
- Peak impacts not statistically different by rate code

Questions?

Josh Bode, MPP

Partner
Demand Side Analytics
jbode@demandsideanalytics.com

Brian Kurtz, MBA

Manager: Customer Satisfaction & Utility 2.0 PMO PSEG-Long Island brian.kurtz@pseg.com

Tim Larsen, PhD

Consultant
Demand Side Analytics
tlarsen@demandsideanalytics.com